Валідація коду Serpent 2 для визначення коефіцієнта розмноження нейтронів ядерного палива ВВЕР-1000 у межах підготовки константного забезпечення СВРК АЕС
ARTICLE PDF

Ключові слова

нейтронно-фізичний розрахунок, Serpent, метод Монте-Карло, коефіцієнт розмноження, розрахункові коди, валідація, бенчмарк, ВВЕР-1000

Як цитувати

Trofymenko, O., YakimchukА., Cherepanov, I., Romanenko, I., Gulik, V., Holiuk, M., Khotiaintseva, O., Kutsyn, P., & Nosovskyi, A. (2022). Валідація коду Serpent 2 для визначення коефіцієнта розмноження нейтронів ядерного палива ВВЕР-1000 у межах підготовки константного забезпечення СВРК АЕС. Ядерна та радіаційна безпека, (2(94), 53-66. https://doi.org/10.32918/nrs.2022.2(94).06

Анотація

У статті описано валідацію розрахунків коефіцієнта розмноження Монте-Карло кодом Serpent 2. Валідацію проведено порівнянням з іншими нейтронно-фізичними кодами. Опис валідаційної моделі та дані для порівняння взяті з бенчмарку «A VVER-1000 LEU and MOX Assembly Computational Benchmark, NEA/NSC/DOC(2002)10», у якому містяться результати розрахунку нейтронно-фізичних характеристик тепловидільної збірки реактора ВВЕР-1000 такими кодами як-от: MCU, TVS-M, WIMS8A, HELIOS, MCNP4B, MULTICELL. Також виконано порівняння з кодом версією Serpent 1, яка є попередньою версією розглянутого коду Serpent 2. Отримані результати свідчать про коректність розрахунку ефективного коефіцієнта розмноження нейтронів ядерного палива за допомогою коду Serpent 2 та можливість його застосування на одному рівні з кодами TVS-M та HELIOS, які використовуються для підготовки константного забезпечення систем внутрішньореакторного контролю атомних станцій.

https://doi.org/10.32918/nrs.2022.2(94).06
ARTICLE PDF

Посилання

Zaporizhzhya NPP burned all night due to shelling. (2022, March 4). BBC Ukrainian. Retrieved March 13, 2022, from: https://www.bbc.com/ukrainian/news-60615300/

Melnyk, T. (2022, March 4). Zaporizhzhya nuclear power plant is controlled by the occupiers. Normal radiation background (updated). Forbes Ukraine. Retrieved March 13, 2022, from: https://forbes.ua/news/na-zaporizkiy-atomniy-stantsii-pochalasya-pozhezha-miskiy-golova-energodaru-04032022-4134.

Zanuda, A. (2022, February 24). Disconnection under fire: Ukraine's energy system disconnected from Russia and Belarus. BBC Ukrainian. Retrieved March 19, 2022, from https://www.bbc.com/ukrainian/news-60507216.

Markevych, K., Omelchenko, V. (2015). Nuclear energy in the world and Ukraine: current state and prospects of development (analytical review). Razumkov Center. Kyiv.

Ministry of Energy of Ukraine. (2021, October 18). Herman Galushchenko: Atomic generation is the most reliable generation in the country. Retrieved March 13, 2022, from: https://www.kmu.gov.ua/news/german-galushchenko-atomna-generaciya-najbilsh-nadijna-generaciya-v-krayini.

Omelchenko, V. (2020, December 2). Diversification of nuclear fuel supply to Ukraine: chronology and open questions. Retrieved March 13, 2022, from: https://razumkov.org.ua/statti/dyversyfikatsiia-postachania-iadernogo-palyva-v-ukrainu-khronologiia-ta-vidkryti-zapytannia.

Westinghouse nuclear fuel arrived at Rivne. (2021, July 21). NPP. Economic Truth. Retrieved March 13, 2022, from: http://www. althoughda.com.ua/news/2021/07/21/676148/.

Westinghouse Electric Company LLC (2022, February 23). Westinghouse is the most comprehensive provider of full nuclear cycle services. Retrieved March 13, 2022, from: https://info.westinghousenuclear.com/ukraine/news-insights/.

Russia attacked Ukraine. Explosions are heard in different cities. (2022, February 24). BBC Ukrainian. Retrieved March 13, 2022, from: https://www.bbc.com/ukrainian/news-60432981.

National Academy of Sciences of Ukraine. (2022, March 17). Address of the Presidium of the National Academy of Sciences of Ukraine to scientists of the Academy. Retrieved March 17, 2022, from: https://www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=8807&fbclid=IwAR2zt-JJ9uHs-MUkzMT-bc8ED2Bqeo73HNW6wP8EpofozW2RCJa8z209.

Gas prices break the record of $ 2,000 – due to frost, wind and Gazprom. (2021, December 21). BBC Ukrainian. Retrieved March 13, 2022, from: https://www.bbc.com/ukrainian/news-59740052.

Boredom, A. (2022, January 28). Sanctions against Russia: what you need to know about them. BBC Ukrainian. Retrieved March 13, 2022, from: //www.bbc.com/ukrainian/features-60154742.

Visontay E. (2022, February 25). Ukraine soldiers told Russian officer ‘go fuck yourself’ before they died on island. The Guardian. Retrieved March 13, 2022, from: https://www.theguardian.com/world/2022/feb/25/ukraine-soldiers-told-russians-to-go-fuck-yourself-before-black-sea-island-death.

Nosovsky, A. V., Vasilchenko, V. N., Klyuchnikov, A. A., Prister, B. S. (2006). Accident at the Chornobyl nuclear power plant. Experience of overcoming. Lessons learned, A. V. Nosovsky, Ed., Chornobyl: K.: Technology. 264 p.

Uatom. Operating NPPs: Retrieved March 13, 2022, from: https://www.uatom.org/zagalni-vidomosti.

Khalimonchuk, V. A. (2015). Operation of the top-level VVER-1000 SVRK software in the conditions of implementation of the expanded program on diversification of nuclear fuel in Ukraine. Nuclear and Radiation Safety. 1(65), 7-12. doi: 10.32918/nrs.2015.1(65).02.

Gorelik, O. H., Eliseev, V. V., Kuzhil, O. S., Orlovsky, V. D., Padun, S. P., Yakubov, V. F. (2005). The concept of modernization of WWER-1000 internal reactor control systems of Ukrainian NPPs. Nuclear and Radiation Safety, 4, 53-65.

Petrunin, D. M., Belyaeva, E. D., Kireeva, I. L. (1975). BIPR-5 program. Description of structure and input data. Educational ed., E.D. Markova, Ed., Moscow: Institute of Atomic Energy. I. V. Kurchatova, 38 p.

Pavlovich, V. M. (2009). Physics of nuclear reactors. Chornobyl: CJSC "Book", 224 p.

Watson, J., Ivanov, K., Macian, R. (1997). Cross Section Generation Methodology for Three Dimensional Transient Reactor Simulation. Transactions of the American Nuclear Society.

Galchenko, V. V., Mishin, A. A. (2015). Comparative analysis of the neutron-physical characteristics of the reactor campaign using different sets of nuclear data libraries for the WIMSD5B software product. Nuclear and Radiation Safety. No. 3 (67), 8-12. doi: 10.32918/nrs.2015.3(67).02.

Galchenko, V. V., Mishin, A. A., Shlapak, I. I. (2018). Constant provision of the subsystem of physical calculations SVRK-M "Voyage". Nuclear Physics and Energy, 2(19), 121–130.

Power Unit 2. Services for refining SVRK algorithms to ensure control of mixed fuel loading. (2016, November 09). NNEGC Energoatom. Retrieved March 13, 2022, from: https://prozorro.gov.ua/tender/UA-2016-10-25-000250-a.

Implementation of fuel assemblies manufactured by Westinghouse at Zaporizhzhya NPP power plant. Development of a methodology for the preparation of constant support for the SVRK. (2016). SRPA “Impulse”. Severodonetsk.

Galchenko, V. (2007). Date preparation comparison analysis using differential computer miracles. Part 2. Nuclear and Radiation Technologists. 7(3-4), 29-41.

Lux, I., Koblinger, L. (2000). Monte Carlo Particle Transport Methods: Neutron and Photon Calculations. Boca Raton. Florida: CRC Press. Inc., 530 p.

Briesmeister, J. F. (2000, December 18). MCNP - A General Monte Carlo Code N-Particle Transport Code (Version 4C). Radiation Safety Information Computational Center (RSICC). Retrieved March 13, 2022, from: https://inspirehep.net/files/78c669e8d3bb59ccf6fb868a6061450c.

LANL. A General Monte Carlo N-Particle (MCNP) Transport Code. Retrieved March 19, 2022, from: https://mcnp.lanl.gov/.

Galchenko, V. V., Gulik, V. I., Shlapak, I. I. (2016). Use of the Serpent software product based on the Monte Carlo method to calculate the characteristics of the fuel assembly of the WWER 1000 reactor. Nuclear Physics and Energy, 3(17), 250-258.

Leppänen, J. (2004). Serpent a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. VTT Technical Research Centre. Retrieved March 13, 2022, from: http://montecarlo.vtt.fi/index.htm.

Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V., Kaltiaisenaho, T. (2014). The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy. 82, 142-150.

A VVER-1000 LEU and MOX Assembly Computational Benchmark. NEA/NSC/DOC. 2002. Retrieved March 13, 2022, from: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2002-10.pdf.

Galchenko, V., Shlapak, I., Gulik, V. (2017). Computational Benchmark for Fuel Assembly of VVER-1000 Using the Monte Carlo Serpent Code. Nuclear Technology & Radiation Protection, 1(33), 24-30.

National Nuclear Data Center (NNDC). (2022, March 7). Experimental Nuclear Reaction Data (EXFOR). Viktor Zerkin (NDS, International Atomic Energy Agency). Retrieved March 19, 2022, from:https://www-nds.iaea.org/exfor/.

NEA Data Bank. Management Board for the Development, Application and Validation of Nuclear Data and Codes (MBDAV). Nuclear Energy Agency (NEA). Retrieved March 13, 2022, from: https://www.oecd-nea.org/jcms/pl_28124/about-the-data-bank.

Viitanen, T., Leppänen, J. (2016). Calculating Neutron Dosimeter Activation in VVER-440 Surveillance Chains with Serpent. 26th AER Symposium on VVER Reactor Physics and Reactor Safety (October 10-14). Helsinki, Finland.

Viitanen, T., Leppänen, J. (2014). Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry. EPJ Web of Conferences, 106.

Aufiero, M., Brovchenko, M., Cammi, A., Clifford, I., Geoffroy, O., Heuer, D., Laureau, A., Losa, M., Luzzi, L., Merle-Lucotte, E., Ricotti, M., Rouch, H. (2014). Calculating the effective delayed neutron fraction in the molten salt fast reactor: Analytical, deterministic and Monte Carlo approaches. Annals of Nuclear Energy, 65, 78-90.

Leppänen, J., DeHart, M. (2009). HTGR reactor physics and burnup calculations using the Serpent Monte Carlo code. American Nuclear Society Transactions, 101, 782-784.

Gulik, V., Tkaczyk, A. H. (2014). Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems. Nuclear Engineering and Design, 270, 132-142.

Leppänen, J. (2019, October 5). Serpent Code Wiki: user Manual for Serpent 2. Retrieved March 19, 2022, from: http://serpent.vtt.fi/mediawiki/index.php/Main_Page.

Chadwick, M., Obložinský P., Herman M., Greene, N. M. (2006). ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets. 102, 2931-3060.

Oblozinsky, P. (2008). International Conference on Nuclear Data for Science and Technology 2007. New ENDF/B-7.0 library. Upton.

V. d. Marck, S.C. (2012). Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6. Nuclear Data Sheets. 113, 2935-3005.

Qualification of the calculated Monte Carlo code Serpent for the preparation of constant support for the diffusion calculation of WWER reactors. (2020). SRPA “Impulse”. Severodonetsk. Luhansk region. Ukraine.

Завантаження

Дані завантаження ще не доступні.